
Uveal melanoma (UM) is a rare disease that is very 
different from its cutaneous counterpart1. UMs arise 
from melanocytes in the uvea, which comprises the 
pigmented tissues of the iris (in the anterior chamber 
of the eye), and ciliary body and choroid (in the poste-
rior chamber of the eye; Fig. 1). More than 90% of UMs 
involve the choroid, with only 6% being confined to the 
ciliary body and 4% to the iris2. Most patients present 
between the ages of 50 years and 70 years; occurrence 
before adulthood is rare3. The disease is usually unilat-
eral. Risk factors for developing UM include fair skin, 
light-​coloured eyes, congenital ocular melanocytosis, melano
cytoma and  the BAP1-​tumour predisposition syn-
drome4. A role for ultraviolet (UV) radiation exposure in 
UM has been suggested, as in cutaneous melanoma, but 
is unlikely to be involved in posterior UMs owing to the 
very low mutation burden and absence of a UV muta-
tional signature in UM5–8; the cornea, lens and vitreous 
effectively remove most UV radiation such that very 
little reaches the choroid9. However, tumour initiation 
has a predilection for the macula, where light is focused, 
suggesting a role for non-​UV wavelengths10. UMs of the 
iris are located in front of the lens, and may be under 
the influence of UV-​induced DNA damage (Box 1).

UMs usually present with symptoms such as blurred 
or distorted vision, visual field loss or photopsia; ~30% 
are asymptomatic and detected on routine examina-
tion (such as regular check-​up or diabetic retinopathy 

screening)11. Ocular treatment aims to conserve the 
eye and useful vision and consists of various forms and 
combinations of radiotherapy, phototherapy and local 
resection, reserving enucleation for advanced cases. 
Despite treatment of the primary tumour, ~50% of 
patients with UM will develop metastatic disease (usually 
via haematogenous spread)12,13. Currently, effective ther-
apies to prevent the development of metastases are not 
available, but early treatment of indeterminate lesions 
may help to prevent the development of lethal UM14. 
Metastases from UM respond poorly to chemotherapy 
or targeted therapy and are usually fatal within 1 year of 
the onset of symptoms. Long-​term survival is rare except 
in patients with isolated liver metastases that are amena-
ble to surgical resection. Unlike cutaneous melanoma 
metastases, UM metastases generally do not respond 
to immune checkpoint inhibitors. However, encour-
aging results with other immunotherapy strategies  
are emerging.

Choroidal naevi (Box 2) and UM almost all carry a  
driver mutation in a GNA family gene15–17, such as GNA11  
and GNAQ, which encode guanine nucleotide-​binding 
protein Gα subunits of the Gαq family. Recent multi-​omic  
analyses have defined molecular UM subsets, which 
differ in their genetic aberrations, methylation pattern,  
gene expression profile (GEP), and metabolomic 
and immunological characteristics5,18–20 (Table  1). 
Prognostically favourable type A and B UMs are 
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characterized by disomy 3, a class 1 GEP, and with either 
two (type A) or more (type B) copies of chromosome 8q. 
Type A UMs often have a mutation in EIF1AX (encod-
ing eukaryotic translation initiation factor 1A X-​linked 
(eIF1A)), whereas type B UMs may have a mutation in 
SF3B1 (encoding splicing factor 3B subunit 1A)7,21. By 
contrast, prognostically unfavourable type C and D UMs 
are highly lethal; these UMs show monosomy 3, a class 2 
GEP, inactivation of BAP1 (encoding BRCA1-​associated 

protein 1; located on chromosome 3), multiple copies 
of chromosome 8q and, in type D, an inflammatory 
phenotype18,20,22–24.

In this Primer, we describe the biological and clini-
cal features of UM, focusing on posterior UM, as these 
share many characteristics and differ from anterior UMs. 
We discuss the current ophthalmological and systemic 
management of patients with this disease. Although 
treatment of the primary tumour is usually quite effec-
tive, therapies to prevent and treat the (currently) deadly 
metastases are urgently needed. We describe the newest 
developments with regard to personalized treatments 
and immunotherapy, which may ultimately lead to 
effective treatment of tumour metastases.

Epidemiology
Although some studies have shown that men and 
women are affected in equal numbers, others suggest 
a slight preponderance of UM in men25. The incidence 
of UM varies from <1 to >9 per million population per 
year26. In Europe, the incidence varies by region, with 
a south-​to-​north increasing gradient that is reflected 
in a minimum incidence of <2 per million population in 
Spain and southern Italy, and a maximum of >8 per mil-
lion population in Ireland, Norway and Denmark25,27. 
The incidence in Australia and New Zealand is similar 
to that in northern Europe, 9.8 and 9 per million pop-
ulation per year, respectively28,29. The incidence is low 
in Asian countries/jurisdictions such as South Korea 
(0.4 per million per year)30 and Japan (0.6 per million per 
year)31, as well as in Africa (0.3 per million per year)32. 
Factors associated with an increased risk of UM in these 
populations include fair skin, light eye colour (blue and 
grey iris colour) and an increased tendency to sunburn; 
blonde or red hair has not consistently been reported 
as a significant risk factor33,34. Patients with UM also 
have an increased frequency of dysplastic naevi, cuta-
neous melanomas and a positive family history of this 
malignancy35–37. The 5-​year and 15-​year disease-​related 
mortality of UM is ~30% and ~45%, respectively12.

Genetic risk factors
Thus far, only a few studies have looked at the genetic 
basis of UM, uncovering high-​risk and low-​risk loci wor-
thy of further investigation. For low-​risk loci, a study 
of single nucleotide polymorphisms (SNPs) known to 
be risk variants for cutaneous melanoma in a series of 
272 patients with UM and 1,782 controls showed a sig-
nificant association between UM risk and SNPs in the 
pigmentation genes HERC2, OCA2 and IRF4 (ref.38). This 
finding is consistent with the known association of blue 
eyes and fair skin with UM39. A subsequent genome-​wide 
association study (GWAS) study comparing 535 patients 
with UM and 585 healthy controls confirmed the asso-
ciation between SNPs in pigmentation genes and UM40. 
The GWAS analysis also revealed a new candidate locus 
at chromosome 5p15.33 in the region that includes the 
genes TERT (encoding telomerase reverse transcriptase) 
and CLPTM1L (encoding cleft lip and palate transmem-
brane protein 1-​like protein)40. Risk variants from this 
region were positively associated with a higher expres-
sion of CLPTM1L in UM, which purportedly contributes 
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Fig. 1 | Development of UM. Uveal melanomas (UMs) arise from melanocytes in the 
pigmented uveal tissues of the eye; the uvea is made up of the iris, ciliary body and choroid. 
Individuals at increased risk of developing UM include those 50–70 years of age, and those 
with a fair skin colour and a sensitivity to sunburn, a light iris colour, congenital ocular 
melanocytosis (a congenital ocular pigmentary condition) or melanocytoma. Individuals 
with a family history of cutaneous melanoma and UM are also at risk , as are those with  
the BAP1-​tumour predisposition syndrome. Some UMs (30%) are asymptomatic and are 
discovered on routine examination.
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to RAS-​dependent transformation and tumorigenesis41. 
Additionally, genetic risk loci may be found by ana-
lysing exceptional cases; when characterizing outlier 
responders to immune checkpoint therapy, deleteri-
ous germline mutations of MBD4 were found in four 
patients with UM42,43. Inactivation of MBD4 in tumours  
leads to a hypermutator phenotype, even in UM with its 
otherwise low mutational load.

For high-​risk loci, the Cancer Genome Atlas (TCGA) 
project has identified rare germline mutations in seven 
different cancer genes18,44, of which BAP1 shows strong 
evidence for association with hereditary predisposition 
to UM45. Although the frequency of BAP1 germline 
mutations is 1–2% in the overall population of patients 
with UM44,46,47, it increases to 18–22% in those with 
familial occurrence of UM (FUM)48,49. FUM is defined 
as the occurrence of UM in two or more individuals  
in the same blood line, and represents 0.6% of all UMs50; in  
FUM, the UM is usually unilateral48. In addition to BAP1, 
germline mutations in other known cancer genes (such 
as MLH1, PALB2 and SMARCE1) are observed in an 
additional 9% of patients with FUM51,52. Other genomic 
analyses have revealed sporadic associations with several 
other genes, such as BRCA1 (refs51,53), BRCA2 (refs54,55), 
FLCN56,57, MSH6 (refs51,58), and CHEK2 (ref.51). For genes 
other than BAP1, evidence for association with UM 
ranges from moderate (MLH1 and PALB2) to limited (all 
other genes) due to the rarity of UM and the significant 
genetic and phenotypic heterogeneity of the disease51.

Approximately 12% of patients with UM have a strong 
personal and/or family history of cancer50,59. A wide 

variety of non-​ocular second primary cancers have 
been reported, including cutaneous melanoma4,36,48,60, 
gastrointestinal and urinary tract cancers, breast cancer, 
non-​Hodgkin lymphoma59,61–63 and multiple myeloma. 
UM may occur as part of the BAP1-​tumour predisposi-
tion syndrome, which is associated with the development 
of melanocytic cutaneous tumours, mesothelioma and 
renal cell carcinoma. Other malignancies that have been 
linked to this syndrome include meningioma, cutaneous 
basal cell carcinoma and cholangiocarcinoma4.

Environmental risk factors
Epidemiological studies have identified welding as an 
environmental risk factor for UM64,65. The risk from 
welding is more complex than just UV exposure, as it 
includes visible and infrared radiation, and frequently 
co-​occurs with other potential risk factors such as 
chemical exposure64. Indeed, associated chemical risk 
factors include asbestos, antifreeze, formaldehyde and 
pesticides65. Environmental exposure to chemicals may 
play a part in patients with a BAP1-​germline mutation. 
Mice with an inducible BAP1 mutation develop more 
malignancies in response to asbestos, associated with an 
increased inflammatory response66. Similarly, patients 
with mesothelioma harbouring BAP1 mutations show a 
higher sensitivity to asbestos67.

Other epidemiological risk factors include the use of 
sunlamps, cumulative intense sun exposure and com-
mercial cooking64,65. Despite publicity in the media, 
no scientific evidence links UM to the use of mobile 
phones68. In the USA, unexplained clusters of UM have 
occurred in Auburn, AL69 and Huntersville, NC70.

Mechanisms/pathophysiology
Genetic variants associated with an elevated risk of 
developing UM, including variants of pigmentation 
genes, are likely to account for the epidemiologi-
cal trends of UM. However, the roles of the different 
types of melanin in early malignant transformation are 
under investigation. Mechanistically, we can deduce a 
link between light eye colour and higher propensity of 
developing UM. Blue or grey irises are associated with 
phaeomelanin (yellow–brown pigment), whereas brown 
irises are associated with eumelanin (black–brown pig-
ment)71. Melanocytes with reduced functional OCA2, 
which is likely to be involved in the rate limiting step of 
melanin synthesis, show defective eumelanin synthesis, 
but normal phaeomelanin synthesis72,73 (Fig. 2). The UM 
themselves may vary from amelanotic, lightly pigmented 
to heavily pigmented. Amelanocytic tumours are associ-
ated with catalytically inactive or less active tyrosinase74. 
Electron microscopy studies of amelanotic tumours have 
shown abnormal morphology and characteristics of the 
melanosomes, with preserved phaeomelanin and loss of 
eumelanin in the melanosomes75. Occasionally, tumours 
are partially amelanotic and partially pigmented.

Malignant transformation
Highly recurrent mutations in UM strongly support the 
notion that subsequent malignant transformation in cho-
roidal melanocytes is driven by the combination of two 
main events. These events are an alteration in the Gαq 

Box 1 | Uveal melanoma of the iris

Owing to its greater visibility, iris melanoma is typically diagnosed at an earlier stage 
than ciliary body and choroidal melanoma; it has a lower histological grade and the 
lowest incidence of metastasis, which is thought to reflect its small tumour burden327.  
In addition to light eye colour, welding may increase the risk of developing iris 
melanoma, for reasons that are unclear64. Iris melanomas are more frequent in the 
inferior quadrant of the iris2, a location that is prone to develop naevi and receives 
greater ultraviolet (UV) radiation exposure than other parts of the eye64. Although the 
overall frequency of uveal melanomas (UMs) is low in young people (<21 years of age, 
most presenting at 15–20 years of age), this population has a relatively higher frequency 
of iris melanoma (12–41% of UMs) than in adults (~4–8%)2,328,329. Genetically, iris 
melanomas can resemble ciliary body and choroidal melanoma330,331, or cutaneous 
melanoma332. A gene expression profile study found that one-​third of iris melanomas 
have a high-​risk class 2 molecular signature333, despite their low rate of metastasis.

Iris melanomas are diagnosed on clinical examination, gonioscopy and iris 
photography, and high-​resolution anterior segment ultrasonography. Growth of the 
lesion is a hallmark of malignant transformation, which is also associated with age  
≤40 years, hyphaema (pooling of blood inside the anterior chamber of the eye), inferior 
location of the tumour, diffuse extent of tumour, ectropion uvea (the presence of 
pigment epithelium on the anterior surface of the iris) and feathery margins334. 
Other important features include tumour nodule, vascularity, tumour seeding,  
sectoral cataract and secondary glaucoma. Staging is performed using the American 
Joint Committee on Cancer tumour–node–metastasis staging for iris tumours335.

Iris melanoma is treated by surgical excision, brachytherapy, proton beam therapy or 
enucleation336,337. Fine-​needle or vitrector-​assisted aspiration biopsy may be performed 
to confirm the diagnosis and provide tissue for genetic testing338,339. During brachytherapy, 
placing an amniotic membrane graft under the plaque can protect the cornea and 
reduce discomfort. Glaucoma secondary to iris melanoma may be due to tumour 
involvement in the angle, hyphaema and neovascularization of the angle. Filtering 
surgery or minimally invasive glaucoma surgery should be avoided234,340. Follow-​up with 
a medical oncologist for systemic tumour surveillance is recommended.
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pathway and a BSE event — standing for BAP1, splice 
and EIF1AX mutations76. The actual order of oncogenic 
events that lead to the development of UM is starting to 
be elucidated. A mutation in a GNA family gene is sus-
pected to be the initiating event, as these mutations are 
present in benign blue naevi and uveal naevi; however, 
the exact mechanism of progression from benign naevus 
to UM has yet to be analysed15–17. Furthermore, sophis-
ticated recent genomic analyses support an alternative 
model of punctuated evolution, with almost simultaneous 
emergence of all oncogenic events76.

Gαq pathway alterations. Virtually all UMs carry a 
mutually-​exclusive hotspot mutation that activates the 
Gαq pathway. Mutations usually involve GNAQ and 
GNA11, but sporadically occur in CYSLTR2 and PLCB4. 
GNAQ and GNA11 encode α subunits (αq family) of the 
heterotrimeric G proteins, which normally only activate 
intracellular signalling pathways in response to activa-
tion; for example, CYSLTR2 is activated by leukotrienes. 

Most choroidal naevi carry a mutation in GNAQ or 
GNA11 (ref.15), as do ~85% of UMs, most often at codon 
Q209; in ~5% of UMs, the mutations are at codon R183 
and, exceptionally, at G48 (refs16,17). L129 CYSLTR2 and  
D630 PLCB4 mutations are found in ~10% of UMs 
(refs77,78). CYSLTR2 is a cell-​surface leukotriene receptor 
of the G protein-​coupled receptor family, which depends 
on Gαq for downstream signalling. L129 CYSLTR2 and 
D630 PLCB4 mutations define a signal transduction 
pathway that leads to the activation of protein kinases C 
(PKCs). The actionable small G protein ARF6 acts just 
downstream of Gαq and activates multiple pathways, 
including mitogen-​activated protein kinase (MAPK),  
β-​catenin, RhoA–Rac and Yes-​associated protein (YAP)79 
(Fig. 3). Although mutations leading to activation of the 
Gαq pathway are present in almost all UMs, the respec-
tive roles of these pathways in oncogenesis are unclear. 
Several reports strongly support a major role for YAP 
activation in UM80,81, with Gαq activating focal adhesion 
kinase (FAK) via the TRIO–RhoA pathway, and with 
FAK subsequently activating YAP via Mps one binder 1  
(MOB1) (ref.82). With regard to metastases, interfering 
with this pathway is considered an option for treatment; 
Gαq mutations activate the MAPK pathway16,17, but the 
relative inefficacy of MAPK inhibitors in clinical trials in 
patients with UM suggests an accessory role of this path-
way in tumorigenesis. Drugs that directly inhibit Gαq, 
such as FR900359 and YM-254890, do not distinguish 
between wild-​type and mutated Gαq, making them toxic 
and unsuitable83,84.

BSE event. As the annual rate of malignant transfor-
mation of choroidal naevi to melanoma is estimated 
to be 1 in 8,845 (ref.85), another genetic aberration is 
considered essential for developing malignant poten-
tial. This subsequent BSE event consists of a biallelic 
inactivation of  BAP1, a change-​of-​function heterozy-
gous mutation of a splicing gene (mainly of SF3B1) or 
an N-​terminal tail mutation in EIF1AX. BAP1 biallelic 
inactivation occurs in ~50% of primary UMs, combining 
loss of heterozygosity (mostly monosomy 3) and a del-
eterious somatic mutation of the second BAP1 allele in 
a two-​hit model. BAP1-​inactivated UMs are at high risk 
of metastatic relapse23. BAP1 is a nuclear deubiquitinat-
ing hydrolase with many functions86, including protein 
deubiquitination, cell cycle regulation and cell growth, 
DNA damage repair, regulation of apoptosis87, chroma-
tin remodelling and regulation of gene expression. Loss 
of BAP1 is associated with changes in DNA methylation 
patterns18,88. Supporting its role in chromatin remodel-
ling, the BAP1 orthologue in Drosophila, Calypso, was 

Box 2 | Choroidal naevi

The choroidal naevus is the most common intraocular tumour341 (usually <1.5 mm in 
thickness); it results from outgrowth of melanocytes derived from the neural crest. 
Naevi are uncommon in children, and the prevalence is 1.4–6.5% in adults, increasing 
with age342. Prevalence is higher in white individuals than in those of Hispanic, African 
or Asian descent. Most choroidal naevi are asymptomatic, but can become symptomatic 
owing to, for example, secondary serous foveal detachment, photoreceptor degeneration 
or subretinal choroidal neovascularization. Most naevi are located posterior to the 
equator, are largely brown in colour but can also be yellow (amelanotic) or mixed brown 
and yellow (melanotic–amelanotic). The overlying retinal pigment epithelium may 
undergo changes such as the development of drusen (yellow, lipid-​rich deposits under 
the retina), atrophy or hyperplasia. Genetically, most naevi are already characterized by 
a GNAQ or GNA11 mutation15. Histologically, naevi can be thick or thin, and with vessels 
inside the naevus or at its border. Three different cell types can be distinguished: plump 
polyhedral naevus cells, slender spindle cells and balloon cells.

Ultrasonography is used to measure the naevus and to differentiate a naevus from a 
melanoma; naevi have high internal reflectivity on diagnostic A-​scan ultrasonography, 
whereas melanomas have lower internal reflectivity. Fluorescein angiography can be 
applied to determine ‘hot spots’, which are bright pinpoint hyperfluorescent foci, and 
leakage of fluorescein, which are signs of malignancy. Spectral domain optical coherence 
tomography (SD-​OCT), especially with enhanced depth imaging mode, may show 
choriocapillaris thinning overlying the naevus, retinal pigment epithelium atrophy and 
photoreceptor loss. Growth of a naevus may be a sign of malignant transformation into 
a choroidal melanoma. The annual rate of malignant transformation of a naevus into a 
melanoma in white Americans has been calculated to be 1 in 8,845 individuals85. Risk 
factors for naevus transformation include thickness >2 mm, diameter >5 mm, subretinal 
fluid, symptoms, orange pigment on the tumour surface and acoustic hollowing of the 
tumour on ultrasonography, which is an echogenically ‘empty’ (or dark) appearance of 
the tumour on B-​scan ultrasonography190. The acronym MOLES (mushroom shapre, orange 
pigment, large size, enlargeing tumour and subretinal fluid) can be used to help distinguish 
key clinical features between choroidal melanonoma and naevi (devised by B.E.D.).

Table 1 | Molecular uveal melanoma subsets

Subset Metastatic 
potential

mRNA 
GEP

Chromosome 3 Chromosome 8q Chromosome 6p Key 
mutation

Inflammation

A Low Class 1 Two copies Two copies Partial or total gain EIF1AX No

B Intermediate Class 1 Two copies Partial gain Gain SF3B1 No

C High Class 2 One copy Three or more copies No change BAP1 No

D High Class 2 One copy Three or more copies; 
isochromosome 8q

No change BAP1 Yes

GEP, gene expression profile. Based on data from refs5,18–20.

Punctuated evolution
Rapid bursts of events that 
drive tumour fitness.
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shown to form a complex with ASXL isoforms, which 
are epigenetic scaffolding proteins that assemble epi-
genetic regulators and transcription factors to specific 
loci with histone modifications, and shown to be part 
of the Polycomb machinery, which has a role in the 
maintenance of cell identity via transcriptional repres-
sion89. The Calypso–ASXL and BAP1–ASXL complexes 
demonstrated deubiquitinase activity towards histone 
H2A lysine 119 mono-​ubiquitylation (H2AK119ub)89. 
Notably, one of the two main Polycomb repressive com-
plexes (PRC), PRC1, has precisely the opposite role of 
the BAP1–ASXL complex, that is, it has ubiquitylase 
activity towards H2AK119. Indeed, recent studies have 
revealed that BAP1 co-​localizes with RNA polymerase II 
and protects transcribed genes against PRC1-​mediated 
pressure for gene silencing90,91. If confirmed, BAP1 
would favour transcription and would negatively regu-
late the Polycomb machinery rather than being part of 
this repressor complex.

Another BSE event is a hotspot mutation in a splic-
ing gene, most often SF3B1. Mutations at R625, K666 
and K700 of SF3B1 have been reported in ∼25% of 
UMs7,21,92. Interestingly, mutations in R625, and less 
frequently in K666, prevail in UM, whereas K700 
mutations are more frequent in haematopoietic malig-
nancies. Alternatively, other splicing genes may also 

be involved in UM: SRSF2 with in-​frame deletions has 
been reported in the TCGA cohort18. SF3B1 encodes 
a core component of the U2 snRNP complex of the 
spliceosome that recognizes a branch point upstream 
of the 3′ splice site, which is mandatory for recogni-
tion and correct splicing. SF3B1 mutations result in the 
recognition of alternative branch points, thereby dis-
rupting normal splicing of ~1% of splicing junctions. 
These aberrations mainly result in the usage of alter-
native cryptic 3′ splice sites, leading to the retention of 
short intronic sequences in the mature transcript93,94. 
The possible consequences of these splicing aberrations 
are frameshift insertions with mRNA degradation93, but 
the intronic insertions are in-​frame in one-​third of the 
abnormal transcripts, potentially leading to activated or 
change-​of-​function proteins. The link between splicing 
aberrations, gene down-​regulation or modification and 
malignant transformation in UM has not yet been fully 
clarified. Recently, BRD9, which encodes a core compo-
nent of the non-​canonical BAF chromatin-​remodelling 
complex, was shown to be abnormally spliced and 
repressed, and to have a major tumour suppressor role 
in SF3B1-​mutated UMs95.

Finally, the BSE event can include mutation in 
EIF1AX. eIF1A is a component of the 43S pre-​initiation 
complex that mediates recruitment of the small 
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related to inactivating polymorphisms in the gene encoding melanocortin 1 receptor (MC1R), which results in relatively 
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lacking functional OCA2 (which is required for normal melanin production), tyrosinase (T) — a copper-​containing enzyme 
that catalyses the production of melanin from tyrosine by oxidation — does not traffic properly and is retained in the 
endoplasmic reticulum (ER)–Golgi compartments72,73. This accumulation leads to defective eumelanin (black–brown 
pigment) synthesis, but does not affect the synthesis of phaeomelanin366. In particular, 5,6-​dihydroxy-​indole-2-​carboxylic 
acid (DHICA) accumulates, which causes single-​strand breaks in plasmid DNA (following ultraviolet (UV) exposure as well 
as in the absence of UV)367. Accordingly , a low eumelanin-​to-​phaeomelanin ratio and high concentration of reactive 
oxygen species (ROS) may be a risk factor for the acquisition of somatic mutations in ocular melanocytes71. OCA2 pink-​
eyed allele was found to be a modifier of angiogenesis in a mouse linkage scan368. OCA2-​deficient mice have increased 
plasma levels of melanin precursors369.
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ribosomal subunit to the 5′ cap of mRNAs to initiate 
protein translation. Missense and nucleotide dele-
tion variants alter the first 15 N-​terminal tail codons 
of EIF1AX in ~15% of UMs21. EIF1AX mutations are 
thought to alter the translation initiation site and the 
expression of protein products but the nature of their 
downstream targets is yet to be defined21,96. It should 
be noted that UMs carrying an EIF1AX mutation are 
generally characterized by an excellent outcome.

Metastasis
In a study of >8,000 patients with UM, the 10-​year rates 
for metastasis were 33% for ciliary body melanoma, 
25% for choroidal melanoma97 and 7% for iris mela-
noma, with deaths typically occurring 1–3 years after 
treatment98 and probably associated with mutations in 
either BAP1 or SF3B1 (refs99,100). The larger the primary 
UM, the higher the number of mutant cells generated, 
which includes those with BAP1 and SF3B1 mutations101. 
Indeed, loss of BAP1 expression can be used to differ-
entiate between tumours with an overall ‘good’ or ‘bad’ 
phenotype; loss of chromosome 3 (refs18,102–104) and 
loss of function of BAP1 on the other chromosome 3 
(refs18,102–104) are usually associated with an mRNA class 
2 gene expression pattern20,23 (Table 1).

Two major studies analysed the genetic and geno
mic evolution between primary and metastatic UMs.  
No new driver mutations in the metastasis and very few 
new mutations were associated with tumour progression, 
and limited heterogeneity was observed at this level. 
Most importantly, BAP1 was not inactivated during 
tumour progression of BAP1 wild-​type UMs, indicating 
that BAP1 inactivation is an early event in tumorigen-
esis and not acquired during metastatic progression. 

Furthermore, additional recurrent copy number changes 
(losses of 1p, 6q and 8p; gains of 1q, 6p and 8q; and 
isodisomy 3) were associated with tumour progres-
sion. Finally, mutations of chromatin-​remodelling fac-
tors, such as PBRM1 and EZH2, seem to occur as late 
events in tumour evolution105,106. These results support 
a sequence of events in UM that begin with BAP1 and 
involve PBRM1, EZH2 and — probably — other genes 
at later stages107.

The liver is the most common site of metastases, 
but metastases can occur in other organs, such as the 
lungs, lymph nodes, bone, skin and brain. The meta-
static process in UM can be divided into three compart-
ments: the primary tumour, haematopoietic tissue and 
liver. UM intravasation into blood vessels occurs in the 
primary tumour; tumour cells enter the systemic cir-
culation, where they pass through the right side of the 
heart, the lungs, the left side of the heart and the aorta 
before being introduced from the systemic circulation 
into haematopoietic tissue, including bone marrow and 
the spleen108,109. Experimental evidence shows that UM 
cells and bone marrow-​derived cells (BMDCs) exit the 
bone marrow, pass through the heart and lungs, and are 
introduced into the spleen and liver110. Direct evidence 
from human specimens shows that cMET expression by 
UM cells plays a part in their affinity for the liver111, as 
the ligand of cMET, hepatocyte growth factor (HGF), 
is produced by hepatic stellate cells112; the cMET–HGF 
axis involvement has been shown in a mouse model 
of metastatic UM113. Homing to the liver also involves 
UM expression of CXCR4114,115; its ligand CXCR12 
(also known as stromal cell-​derived factor (SDF1)) is 
produced by hepatic sinusoidal endothelial cells and 
hepatic stellate cells115,116. Blocking the CXCR4–CXCR12 
axis or the cMET–HGF axis blocks the development of 
metastases in mice117,118. In the liver, there is direct evi-
dence from human specimens119 and evidence from a 
mouse model120 that individual UM cells can infiltrate 
the parenchyma or exhibit periportal localization and 
eventually exhibit angiogenesis, which is essential for 
tumours to grow in this metastatic location.

Metastatic UM may be present in the sinusoidal 
spaces in the liver in an infiltrating growth pattern and in 
the periportal areas in a nodular growth pattern (Fig. 4)119. 
Both growth patterns may be present in the same liver 
and the nodular pattern may give rise to the infiltrat-
ing pattern in some instances121. The infiltrating growth 
pattern of UM is dependent on the creation of pseudo
sinusoidal spaces by hepatic stellate cells, whereas the 
nodular growth pattern is dependent on angiogenesis in 
the periportal areas119,122. Metastatic growth is promoted 
by hypoxia-​induced collagen production by hepatic stel-
late cells in the infiltrating pattern and hypoxia-​induced 
production of vascular endothelial growth factor 
(VEGF) by melanoma cells in the nodular growth pat-
tern119,123. VEGF is counterbalanced by hepatic stellate 
cell production of pigment epithelium-​derived factor 
(PEDF), whereas the melanoma cells themselves pro-
duce platelet-​derived growth factor and transforming 
growth factor-​β, which blocks PEDF production by the 
hepatic stellate cells124. Thus, we (H.E.G.) hypothesize 
that there is a balance of PEDF and VEGF in the liver, 
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mutually exclusive hotspot mutation (at Q209) that activates the Gαq pathway. 
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(which encodes a cell-​surface G protein-​coupled receptor (GPCR) for leukotrienes;  
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similarly activating proliferation. Based on data from refs82,370.
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and once this balance favours VEGF, the metastatic  
UM grows.

Immunology and inflammation
Although tumour-​specific antigens and tumour-​specific 
T cell responses to UM have been identified, antitumour 
immune responses do not seem to affect UM metastasis. 
Furthermore, the low responsiveness of metastatic UM 
to immune checkpoint inhibition suggests that the 
immune-​privileged environment of the eye influences 
the induction and/or effector phase of the immune 
response. Other hypotheses for this unresponsiveness 
include: that immune cells cannot infiltrate UMs; that 
UM cells are not immunogenic, cannot be recognized 
by immune cells and are resistant to immune attack; and 
that UM cells induce immune tolerance.

Immune privilege. Animal studies (Box 3) have shown 
that the intraocular environment promotes tumour 
growth, and several lines of evidence support the notion 
that the eye has immune privilege, with an intraocular 
environment that derails normal immune reactions. For 
example, highly immunogenic, syngeneic tumours that 
are routinely rejected when placed extra-​ocularly survive 
and grow when placed in the eye125,126, a characteristic 
known as anterior chamber-​derived immune deviation 
(ACAID). Tumour cells placed in the anterior chamber 
of the eye in mice actively downregulate cellular immune 

reactions in delayed-​type hypersensitivity (DTH)127,128. 
Furthermore, the subretinal space and vitreous cav-
ity similarly function as immunologically privileged 
sites129. Although DTH responses are downregulated, 
intraocular tumours have been shown to induce cyto-
toxic T cells (CTLs) in mice and to be susceptible to 
CTL-​mediated lysis130.

Leukocyte infiltration. UMs have the lowest leukocyte 
fraction of all cancer types studied by the TCGA131. 
However, although many UMs lack an infiltrate, a minor-
ity of tumours have considerable immune infiltration, 
namely type D tumours22,132 (Table 1). UMs with a moder-
ate or intense immune infiltrate are larger and have more 
vascularization133. UM-​infiltrating leukocytes have been 
shown to be mainly T cells and macrophages, with hardly 
any B cells or natural killer (NK) cells134. The majority of 
tumour-​infiltrating lymphocytes are CD8+ T cells that are 
activated, as shown by expression of HLA-​DR134. Tumour 
infiltrates also contain FOXP3+ regulatory T cells135,136. 
The presence of macrophages seems to be associated 
with tumours showing gain of chromosome 8q; T cell 
infiltrate seems to be associated with tumours showing 
monosomy 3 and loss of BAP1 (refs135,137). These find-
ings indicate an association between genetic tumour 
evolution and the development of an inflammatory infil-
trate. Using the TCGA data, BAP1 loss was associated 
with an upregulated expression of several genes that are 
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Fig. 4 | Metastatic UM in the liver. Metastatic uveal melanoma (UM) in the liver can demonstrate periportal nodular 
growth patterns (top) or sinusoidal infiltrative growth patterns (bottom). In the periportal nodular growth pattern,  
UM cells localize in the periportal areas, become hypoxic and the tumour exhibits angiogenesis with the production of 
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associated with immunosuppression, such as CD38 and 
CD74 (ref.138). These data indicate that although tumours 
may contain a leukocytic infiltrate, the inflammation is 
immunosuppressive in nature.

Immunogenicity. A lack of neoantigens expressed by 
UMs may underlie the inefficacy of immune checkpoint 
inhibitors139,140. These neoantigens provide a stimulus 
and target for new immune responses. As UMs har-
bour few mutations, they are not expected to express 
neoantigens. However, UMs express many pigment-​
related antigens that can be recognized by T cells, such 
as tyrosinase, tyrosinase-​related protein 1 (TRP1), mel-
anoma antigen recognized by T cells 1 (MART1) and 
the melanocyte protein PMEL, also known as gp100 
(NKI-​beteb)141,142. The melanoma antigen gene (MAGE) 
antigens, which are usually expressed on male germ cells, 
and often on cancer cells, are not expressed by UM or 
its metastases143. However, in one study, preferentially 
expressed antigen in melanoma (PRAME) was found to 
be expressed on UM and on its metastases, and may be 
an interesting target144,145.

In many malignancies, tumour cells escape from 
T cell-​mediated immune responses by losing expression 
of one or more HLA alleles146; loss of allele-​specific HLA 
expression occurs in UM147, and may play a part in the 
lack of immune recognition. However, unexpectedly, in 
UM, an inverse correlation between HLA class I expres-
sion and survival has been observed, with low HLA class I  
expression being associated with good survival18,148–151. 
This correlation is thought to be mediated via NK cells; 
a mouse model of cutaneous melanoma lacking HLA 
class I expression had an increased number of metastases 
when NK cells were depleted152. That is, NK cells elim-
inate tumour cells with a low HLA class I expression153 

and prevent tumour infiltration into the hepatic lobule120, 
providing an explanation for UMs with low HLA class I 
expression developing fewer liver metastases151.

A high HLA expression is part of an inflammatory 
phenotype: tumours that have a high HLA class I expres-
sion have high numbers of infiltrating T cells and macro
phages22,154. This infiltrate leads to the production of  
pro-​inflammatory cytokines such as IFNγ, and gives rise 
to upregulation of HLA class I and II antigen expres-
sion on UM cells155,156. Tumour-​infiltrating macrophages 
tend to be of the M2 (pro-​angiogenic) type; in UM, a 
high density of macrophages is correlated with a high 
mean vascular density, large tumour diameter, involve-
ment of the ciliary body and monosomy 3 (refs157–159). 
Influx of macrophages is also associated with an early 
genetic change in UM (namely, addition of extra copies 
of chromosome 8q), whereas the subsequent loss of one 
chromosome 3 and loss of BAP1 expression is associated 
with a further influx of macrophages and an influx of 
T cells137, and with an increased microvascular density160. 
This finding implies that loss of the BAP1 protein may 
regulate local inflammation in multiple ways: not only by 
being associated with an immunosuppressive environ-
ment, as discussed below, but also through the stimula-
tion of an influx of macrophages and the development of 
blood vessels, which are necessary for systemic spread-
ing. However, patients with UM who have increased per-
centages of CD11b+CD15+ myeloid-​derived suppressor 
cells (MDSCs) in their peripheral blood have an associ-
ated impaired T cell function161. The role of BMDCs and 
MDSCs in metastatic UM is under investigation.

Immune evasion. Upon presentation of an antigen in the 
context of the appropriate HLA molecule, co-​stimulatory 
molecules, such as CD80 and CD86, which bind to CD28 
on the T cell, are needed to trigger an immune response. 
UM cells lack these co-​stimulatory molecules162. Genetic 
modifications to introduce these molecules into UM cell 
lines have resulted in enhanced anti-​UM T cell responses 
in vitro163.

UM cells can inhibit the proliferation of T cells in 
a so-​called mixed lymphocyte reaction164 through the 
expression of specific ligands — that is, immune check-
points — that bind to T cell receptors. The immune 
checkpoint blockade genes expressed in UM include 
CTLA4, PD1, PDL1, TIGIT and LAG3 (refs18,165–167). An 
essential characteristic of UM cells is that their resist-
ance to CTL-​mediated lysis increases in the presence of 
IFNγ168. As T lymphocytes produce this cytokine, the 
UM cells present a very strong defence against these 
CTLs168. This phenomenon is probably caused by the 
upregulation of the different immune checkpoint 
molecules, as was shown for PDL1.

Additionally, UM cells may produce immunosup-
pressive cytokines, such as IDO1, that have the same 
function169.

Systemic immune responses. The majority (72%) of 
patients with UM have developed antitumour antibodies 
at a higher rate than patients with carcinoma metastases 
in the uvea (26%) or healthy controls (13%), indicat-
ing that the tumour cells are able to induce a systemic 

Box 3 | Animal models of UM

In vitro and in vivo models of uveal melanoma (UM) are being used to understand the 
effects of the immunologically privileged eye on tumour growth and to develop and 
screen new treatments. The development of xenograft models has improved the 
efficiency of drug screening and may provide models for personalized tumour 
targeting343. Prior to xenograft model use, inoculation of murine or human UM cell  
lines into immunodeficient or immunosuppressed animals was used344 (namely, rats345, 
rabbits346 or zebrafish347). Unfortunately, the complex molecular landscape of UM can 
barely be reflected using cell lines348, as most lack monosomy 3 or loss of BAP1 (ref.349). 
Instead, individual patient-​derived xenograft (PDX) models, which may phenotypically 
and genetically exhibit the characteristics of the primary and metastatic tumours,  
have been developed350 to help determine the most effective therapy for individual 
patients351. However, the necessary immunodeficiency in the animals is a major problem.

More recently, transgenic animal models of UM have become available. The first 
transgenic mouse model was induced by expression of oncogenic GNAQQ209L under the 
control of the Rosa26 promoter and shows neoplastic proliferation in the choroid, along 
with dermal naevi and other melanocytic neoplasms, with 94% of mice subsequently 
developing lung metastases352. Combining mutant Tp53 with GNAQQ209L or GNA11Q209L 
transgenesis led to the development of melanocytic tumours, including UM, with near 
complete penetrance353. Mouse models with melanocyte-​specific expression of 
GNA11Q209L with or without homozygous BAP1 loss have also been generated; the 
models develop pigmented neoplastic lesions from melanocytes of the skin, eye, 
leptomeninges, lymph nodes and lungs354.

A feasible animal model of UM with liver metastases has not yet been established. 
However, using cell lines derived from a confirmed metastatic origin and injecting them 
into the liver or spleen leads to multiple hepatic and intra-​abdominal metastases, 
mimicking those observed in human hepatic metastases of UM355,356.

Neoantigen
Antigens arising from 
expressed mutations in tumour 
cells.

8 | Article citation ID:            (2020) 6:24 	 www.nature.com/nrdp

P r i m e r

0123456789();



immune response170. Furthermore, the anti-​UM anti-
bodies are complement-​fixing, indicating that they 
might be able to kill UM cells171. However, the presence 
of these antibodies does not prevent tumour growth or 
metastasis formation; this may be due to the expres-
sion of membrane-​bound regulators of complement 
activation on UM cells172.

The majority of patients with UM harbour periph-
eral blood lymphocytes that are able to lyse UM cells 
in vitro173, suggesting that the activity of CTLs is intact. 
Recovered tumour-​infiltrating lymphocytes that were 
expanded in vitro had the capacity to react nonspecifi-
cally with HLA-​mismatched UM cells174,175, indicating a 
broad reactivity. Similarly, tumour-​infiltrating lympho-
cytes could be recovered from UM metastases176, again 
suggesting that UM are immunogenic and that patients 
are able to raise anti-​UM T cell responses. Interestingly, 
metastases that were heavily pigmented inhibited the 
outgrowth of tumour-​infiltrating lymphocytes176, sug-
gesting that tumour characteristics have a role in dictat-
ing the immune response — a feature that needs further 
investigation.

Further proof of activity of UM tumour-​infiltrating 
lymphocytes comes from the treatment of patients 
with progressive metastatic disease with autologous, 
metastasis-​derived tumour-​infiltrating lymphocytes. 
After metastasectomy to grow these cells ex vivo, 
patients were treated with lymphodepletion and IL-2 and 
then reinfused with the expanded cells. Of the 20 eval-
uable patients, seven showed objective tumour regres-
sion, but all had severe adverse effects and one died  
of sepsis177. These data all indicate that patients with 
UM are able to raise an immune response against their 
tumours.

Tolerance and resistance. Although UM can metasta-
size to the bone marrow108, this paradoxically may have 
a positive prognostic effect109. Once the bone marrow 
is exposed to UM cells, we (H.E.G.) propose that there is 
an ensuing immunological balance between CTLs that 
are primed by the UM178 and NK cells, which sup-
press IL-10-​secreting BMDCs110. Animal models show 
that once the balance shifts towards less NK activity, 
dormant micrometastases, particularly in the liver, have 
the capacity to grow152. Senescence of the immune sys-
tem, as occurs with ageing179, may also be a factor in the 
emergence from dormancy of UM cells, although this 
has not been analysed in UM.

We can conclude that although UMs induce sys-
temic immune responses and UM cells can be lysed by 
tumour-​infiltrating lymphocytes, the induced immune 
cells are not effective enough to overcome the immuno-
suppressive environment that they encounter in a meta
stasis, or that they cannot penetrate the metastases. As a 
combination of mechanisms prevents the effectiveness of 
the anti-​UM immune responses, combining treatments 
may be a way forward.

Diagnosis, screening and prevention
Visual symptoms of choroidal and ciliary body tumours 
that should lead to a referral include blurred or dis-
torted vision, visual field loss or photopsia11; patients 

are usually referred to an ocular oncologist through an 
optometrist, family doctor or ophthalmologist. However, 
a study from the Liverpool Ocular Oncology Centre, 
UK, between 1996 and 2011, showed that of 2,384 
patients diagnosed with UM, one-​third of patients with 
UM were asymptomatic11. Due to the rarity of the dis-
ease, no population screening takes place. As risk fac-
tors are mainly genetic, and a role for UV radiation is 
ambiguous, no specific advice can be given regarding 
preventive measures. Whether wearing sunglasses helps 
to reduce the risk of UM is unknown.

In terms of public health innovations in diagno-
sis and treatment of choroidal melanoma, in the UK, 
a nurse-​led ocular oncology clinic proved to be feasi-
ble180. In Brazil, the use of WhatsApp-​based telemedicine 
and YouTube videos to help local ophthalmologists to 
establish the diagnosis and to treat the patients locally  
without the  need for travel have been reported181 
(Oculonco). The ophthalmologist examines the eye 
fully, including the fundus (Fig. 5), and the diagnosis of 
UM is achieved by recognizing classic tumour features, 
using eye slit lamp biomicroscopy and indirect ophthal-
moscopy, combined with the results of a wide range of 
diagnostic tests182–189. Several different imaging modal-
ities are critical to differentiate between benign naevi  
and malignant melanoma190, and between melanoma and 
other tumours.

Imaging
Several techniques are available to diagnose UM. Slit 
lamp biomicroscopy and indirect ophthalmoscopy are 
primary imaging modalities, but gonioscopy and tran-
sillumination may be applied as well. A general oph-
thalmologist may deploy fluorescein angiography in the 
differential diagnosis of a fundus lesion, and then refer 
a patient with a suspicious lesion to a specialized ocu-
lar oncology centre. An ophthalmic oncologist will use 
ultrasonography and anterior segment ultrasonography, 
and will apply sophisticated techniques such as optical 
coherence tomography (OCT). Whichever technique is 
used, limitations need to be taken into consideration, as 
many of these techniques rely on visual identification of 
tumour characteristics.

Slit lamp biomicroscopy and indirect ophthalmoscopy. 
All patients undergo evaluation of the anterior segment 
of the eye with slit lamp biomicroscopy and of the pos-
terior segment with indirect ophthalmoscopy (Fig. 5) to 
determine tumour location, configuration, pigmenta-
tion, vascularity, discreteness of margins, distances from 
the foveola and optic disc, involvement of ciliary body 
and angle, and anteriorly located extrascleral exten-
sion. These methods also identify secondary features 
such as episcleral sentinel vessels, cataract, subretinal 
fluid or orange pigment on the tumour. Several fea-
tures have been identified as risk factors for choroidal 
naevus transformation into melanoma190. To highlight 
five key clinical features distinguishing choroidal mel-
anomas from naevi (moles), we (B.E.D.) devised the 
acronym MOLES, which stands for mushroom shape, 
orange pigment, large size, enlarging tumour and  
subretinal fluid. 

Fundus
The back of the eye.
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Gonioscopy and transillumination. Gonioscopy (a tech-
nique to evaluate the periphery of the anterior segment 
of the eye; Fig. 5) can establish the presence and degree of 
anterior chamber angle invasion of an iris or ciliary body 
melanoma, which extends anteriorly186. This technique is 
performed using a gonioscopic lens with tilted mirrors 
that reveal details in the opposite angle. Melanoma with 
invasion of the angle is associated with a higher risk of 
glaucoma and metastatic disease.

Transillumination (in which a bright light is shone 
into the eye to determine the extent of ciliary body 
involvement; Fig. 5) can be achieved by transcleral or 
transpupillary illumination. A bright fibre-​optic light 

in the conjunctival fornix, opposite the meridian of 
the melanoma, casts a measurable shadow through the 
sclera that denotes the tumour extent. Cystic lesions 
and some tumours, such as leiomyoma, do not cast  
a shadow.

Ultrasonography and ultrasound biomicroscopy. Ultra
sonography is the most-​used application to determine 
the dimensions of a posterior UM. Ultrasonography 
is also essential throughout follow-​up, to measure 
the tumour. There are two types of ocular ultrasono
graphy: A-​scan for internal reflectivity and B-​scan for 
echodensity qualities. With A-​scan ultrasonography, 
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Fig. 5 | Imaging techniques in uveal melanoma. a | Iris melanoma with ciliary body invasion, cataract (asterisk) and lens 
subluxation (not visible) as examined by slit lamp biomicroscopy. Note the prominent episcleral vessels medially , the 
so-​called sentinel vessels, signifying a ciliary body tumour. b | Thin choroidal melanoma located adjacent to the optic disc, 
with overlying orange pigment (arrow), as examined by indirect ophthalmoscopy. c | Gonioscopic photograph showing a 
pigmented iris tumour (probably a melanoma), with pigment in the anterior chamber angle. d | With transillumination,  
a bright fibre-​optic light is placed on the conjunctiva or cornea, opposite the meridian of the suspected melanoma, which 
casts a shadow on the sclera thereby allowing the tumour extent to be defined (arrowhead). The ciliary body is visible as  
a dark ring (arrow). e | B-​scan ultrasound image of a dome-​shaped choroidal melanoma, which shows low internal acoustic 
reflectivity , demonstrated by the A-​scan shown at the lower edge of the image (the red line shows the section of the 
A-​scan). There is a bullous retinal detachment adjacent to the tumour (asterisk). f | B-​scan ultrasound image of a mushroom- 
shaped choroidal melanoma. The apical part of the tumour has grown through the Bruch’s membrane, which has compressed 
the tumour veins to cause oedema and swelling. g | Fundus photograph of a dome-​shaped, choroidal melanoma, which is 
amelanotic and, therefore, needs to be differentiated from metastasis by systemic investigations and/or tumour biopsy.  
h | Fluorescein angiogram of the melanoma displayed in panel g, showing the amelanotic tumour as diffusely hyperfluorescent 
with areas of hypofluorescence owing to ‘masking’ by remnants of the retinal pigment epithelium. i | On the indocyanine green 
angiogram, the tumour is diffusely hyperfluorescent. The choroidal blood vessels are also clearly displayed (arrow).

Glaucoma
A group of eye disorders 
characterized by damage to 
the optic nerve.
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a UM shows medium to low internal reflectivity, 
demonstrating a high peak on the tumour apex, then 
a gradual decrease in reflectivity as the sound wave 
travels through the mass. With B-​scan ultrasonography 
(Fig. 5), a UM shows a dome, mushroom or flat sur-
face configuration191. Additional features of a B-​scan 
include acoustic hollowness and choroidal excavation. 
In a few patients, ultrasonography can disclose orbital 
extension of the tumour where the tumour grows 
through the sclera, usually via an emissary canal. The 
presence of intrinsic vascular pulsations on B-​scan 
is strongly suggestive of a solid tumour rather than 
haemorrhage. In eyes with opaque media from cataract 
or vitreous haemorrhage, the tumour cannot be visu-
alized; instead, the ultrasound waves can be transmit-
ted through the opacification to image the posterior 

segment of the eye191. In some instances, ultrasonogra-
phy might reveal one or more cavities within the mass,  
suggestive of cavitary UM192.

Ultrasound biomicroscopy is a variation of ultra-
sonography that is used to image and measure iris and 
ciliary body tumours193,194. This is particularly impor-
tant to determine the extent of a ciliary body mass, any 
spread through the scleral wall and to determine if an iris 
tumour has invaded the ciliary body.

Angiography and autofluorescence. Fluorescein angio
graphy is a technique whereby fluorescein dye is injected 
intravenously to image the retinal and choroidal vascula-
ture and retinal pigment epithelial abnormalities (Fig. 5). 
On fluorescein angiography, UMs show slow flow with 
mottled hyperfluorescence in the vascular filling phases 
and diffuse late staining of the mass, often into overlying 
subretinal fluid. Much can be learned from looking at 
fluorescence images, identifying changes caused by the 
tumour versus changes in the tumour-​associated retinal 
pigment epithelium195,196. Smaller UMs remain hypofluo
rescent, whereas larger UMs, particularly those with a 
mushroom configuration, can show prominent intrinsic 
vascularity in a haphazard pattern termed double cir-
culation, showing retinal and tumour vessels. Areas of 
UM invasion into the overlying sensory retina are hypo-
fluorescent with staining at the margins. Fluorescein 
angiography can also document preretinal or subreti-
nal neovascularization, which is particularly important 
as preretinal neovascularization can result following 
ischaemia induced by radiotherapy. Indocyanine green 
angiography is a technique whereby indocyanine dye 
is injected intravenously to image the choroidal vessels 
(Fig. 5). Small UMs are hypocyanescent, whereas large 
UMs are hypercyanescent197. This technique is particu-
larly valuable when visualizing the pattern of choroidal 
blood vessels within the tumour, especially when there 
is overlying blood, and also to rule out other tumours 
that show a different vascular pattern, such as choroidal 
haemangioma.

Autofluorescence photography is a non-​invasive 
retinal imaging modality to detect lipofuscin in the ret-
inal pigment epithelium (Fig. 6). This correlates with 
‘orange pigment’ that can be seen by indirect ophthal-
moscopy, which can be useful in the early diagnosis 
of small UMs that often have overlying lipofuscin and 
give rise to geographic hyperautofluorescence198–200. 
Choroidal naevi tend to be iso-​autofluorescent or 
hypo-​autofluorescent, whereas melanomas demon-
strate hyper-​autofluorescence198,199. After treatment, 
blue-​light fundus autofluoresce imaging can be used to  
identify whether a radioactive plaque was properly 
located201.

Optical coherence tomography. OCT is an imaging 
method based on low coherence interferometry of light 
to image the posterior segment of the eye. OCT relia-
bly demonstrates subtle retinal abnormalities, such as 
subretinal fluid, intraretinal oedema, cystoid macular 
oedema and the cross-​sectional configuration of a cho-
roidal mass (Fig. 6). This technique is best employed for 
small UMs (<3 mm in thickness) as the depth of focus 

Lipofuscin
An insoluble yellow-​brown to 
dark brown pigment derived 
from incomplete oxidation of 
lipids.
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Fig. 6 | Small choroidal melanoma with orange pigment and shallow subretinal fluid 
in a young man. Thin choroidal melanoma located superior to the left macula, with 
overlying orange pigment (representing lipofuscin) and subtle subretinal fluid. a | Colour 
fundus photograph. The peripheral dark areas away from the tumour are part of the 
normal choroidal pigment distribution. b | The tumour in panel a (arrow) appears hyper- 
autofluorescent on the autofluorescence photograph where lipofuscin has accumulated. 
c,d | Optical coherence tomography (OCT) image over the fovea of this eye shows no 
abnormalities. The arrow in panel c shows the location of the section shown in panel d. 
e,f | OCT image over the tumour reveals subretinal fluid (asterisk in panel f) and lipofuscin 
clumps on the tumour surface (arrow in panel f).
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includes the posterior vitreous, retina, choroid and, in 
some patients, sclera190,202–206. OCT is valuable for early 
detection of UM, especially when considering factors 
for distinguishing a choroidal naevus from a UM190,206.  
By OCT, many UMs show a dome-​shaped configuration, 
rarely with retinal invasion. The tumour compresses 
the choroidal vasculature, especially the choriocap-
illaris205,207. By contrast, choroidal metastasis shows a 
‘lumpy’ or ‘bumpy’ surface and choroidal lymphoma 
shows an undulating surface. Often, UMs with overlying 
subretinal fluid show fresh ‘shaggy’ photoreceptors that 
probably represent macrophages in the elevated retina. 
For iris melanoma, OCT has been adapted to the ante-
rior segment; however, deeply pigmented tumours tend 
to obstruct light transmission such that the basal tumour 
margin is not visible. In such cases, ultrasound biomicro
scopy is more informative194. Additionally, OCT angio
graphy demonstrates retinal blood flow using OCT and  
split-​spectrum amplitude decorrelation angiography. 
OCT angiography is used mostly for retinal imaging 
and not choroidal imaging; however, studies have found 
that eyes with UM show remote retinal microvasculop-
athy with macular ischaemia208. The most common use 
of OCT angiography is to detect macular microangio
pathy following radiotherapy209, which can be treated. 
When looking at oximetry data, retinal vessels in the 
non-​involved part of the eye containing a UM show an 
increased arteriovenous difference, indicating that a UM 
may influence oxygen use in the whole retina210.

CT and MRI. CT is rarely used to visualize UM, but it 
is sometimes valuable for delineating large tumours or 
orbital invasion211. For most UMs, ultrasonography is 
sufficient for imaging, but MRI can be useful to meas-
ure the basal diameters of a ciliary body UM. MRI is 
more valuable than CT for imaging a UM or orbital 
extension, particularly with large tumours, and MRI 
can detect extrascleral extension of tumour212. MRI has 
high resolution and UMs show a fairly typical pattern on 
T1-​weighted images, demonstrating a bright signal rela-
tive to the vitreous compared with T2-​weighted images, 
which provide a low (dark) tumour signal compared 
with the vitreous213 (Fig. 7). UMs show bright enhance-
ment with gadolinium, a feature that differentiates the 
solid tumour from vitreous or a subretinal haemorrhage. 
The most valuable use of MRI in UM imaging is in eyes 
with opaque media.

Biopsy
Biopsy is a valuable method to establish the diagnosis of 
UM when clinical examination and imaging are incon-
clusive214. The most commonly employed technique is 

fine-​needle aspiration biopsy whereby a 27-​gauge needle 
is passed through the sclera and vitreous under guidance 
by indirect ophthalmoscopy. Other methods use devices 
such as the Essen forceps, which ‘bite’ a pellet-​shaped 
specimen from the tumour, or a vitreous cutter. Biopsy is 
also instrumental in tissue sampling for the cytogenetic 
or gene expression study of UM215–219. Biopsy is regarded 
as a safe procedure when performed by an experienced 
ocular surgeon.

Histopathology. The gross appearance of UM in enu-
cleated eyes includes elongated, nodular or mushroom- 
shaped. These tumours may be pigmented (melanotic), 
non-​pigmented (amelanotic) or a mixture of the two  
(Fig. 8). If the tumour has broken through the Bruch’s  
membrane and has a mushroom shape, the portion of 
the tumour that has broken through the Bruch’s mem-
brane will exhibit vascular dilation, as that portion of the 
tumour is considered to be ‘choked off ’ by the Bruch’s 
membrane, resulting in vascular congestion. Extraocular 
extension of UM usually occurs via vortex veins or along 
nerves or blood vessels in emissary canals in the sclera, 
especially posteriorly.

UM is composed of a mixture of cells, including 
tumour cells, infiltrating macrophages and lympho-
cytes, fibroblasts and blood vessels. The cytological 
classification of UM is based on microscopic analyses 
and follows the modified Callender classification, which 
characterizes UM cells220,221. Spindle A cells are fusiform 
and the nucleus contains a central fold, or groove. These 
cells are now considered to be naevus cells. Spindle 
B cells are also fusiform, contain a spindle-​shaped or 
cigar-​like nucleus with a prominent nucleolus and are 
the most common cell type in UM. Epithelioid cells  
are non-​cohesive and round, and contain a large round 
nucleus with a large prominent eosinophilic nucleolus; 
this cell type is associated with poor outcome. So-​called 
intermediate cells (small epithelioid cells) are an inter-
mediate between spindle B and epithelioid melanoma 
cells. A melanoma that is composed of at least 90% spin-
dle B cells is a spindle cell-​type melanoma, and a mela-
noma that is composed of at least 90% epithelioid cells is 
an epithelioid cell-​type melanoma; all other tumours are 
mixed cell-​type melanomas, which are the most com-
mon (Fig. 9). Regardless of cell morphology, the most 
important immunohistochemical markers expressed by 
choroidal melanoma are HMB45, S100, PMEL, Melan A,  
MITF, tyrosinase and SOX10 (refs141,222–224).

Iris melanomas (Fig. 10a,b) are characterized histo-
logically by spindle and epithelioid cells. Many lesions 
classified as iris melanomas (Box 1) in the past are likely 
to have been naevi, when looking at their clinical course 
and molecular characteristics. Ciliary body UMs may be 
insidious due to their location behind the iris (Fig. 10c,d). 
There may be sentinel vessels in the episclera overlying 
these tumours. Both tumour types may contain spindle 
and epithelioid cells.

Tumours are categorized into different tumour–
node–metastasis (TNM) categories as defined by the 
American Joint Committee on Cancer (AJCC)225.  
The categories are related to the likelihood of developing 
metastases (see below).

a cb

Fig. 7 | MRI of uveal melanoma. All images are from the same patient, with a large 
choroidal melanoma (arrows). T1-​weighted (panel a), T2-​weighted (panel b) and 
T1-weighted fat-​suppressed (panel c) images with gadolinium enhancement are shown.

Bruch’s membrane
The innermost layer of the 
choroid, also known as 
the vitreous lamina.
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Prognosis
Over time, a wide range of histological factors have 
been linked to metastasis formation and prognosis, 
such as cell type, pigmentation, size (largest dimension),  
intrascleral and extrascleral extension, ciliary body 
involvement, mitotic activity, location of the anterior 
margin of the tumour and optic nerve extension221. 
The size of the melanoma is also correlated with out-
come: in a study in 8,033 patients, each millimetre of  
increased thickness added 5% risk of metastasis at 
10 years97. Additionally, vasculogenic mimicry (VM) 
patterns, whereby cancer cells generate structures that 
may allow flow of fluids, have been identified in UM, 
of which arcs with branching, closed vascular loops  
and vascular networks are associated with increased 
risk of metastasis226. These VM patterns include fibro-
vascular septae, melanoma cell-​lined channels and 
endothelial cell-​lined vessels. We can accurately pre-
dict a patient’s chance of developing metastasis; how-
ever, as primary ocular treatment of the eye with a UM 
does not prevent the development of these metastases, 
tumour cells must have disseminated prior to treat-
ment. Currently, no adjuvant therapy has been shown 
to effectively prevent the outgrowth of metastases.  
Attention to the patient’s psychological state is, therefore,  
an important aspect of care (see below).

Management
Once the diagnosis is established, the management of 
patients with UM depends on several factors, includ-
ing tumour size, location and related features such as 
retinal detachment, vitreous haemorrhage and retinal 
invasion182,184,227. Other considerations include patient 
age, general health, status of the opposite eye and the 
patient’s personal desires. All ocular oncology centres 
should have facilities for radiotherapy and enucleation. 
Other, more specialized, centres offer local resection and 
methods of laser treatment, including transpupillary 
therapy, photodynamic therapy and, more recently, Aura 
AU-011 nanoparticle therapy228. Brachytherapy and enu-
cleation are the most common treatment modalities for 
UM worldwide, whereas other globe-​sparing treatments 

such as proton beam and resection are additional avail-
able therapies. However, as this is a rare tumour, few 
comparisons between treatment options have been 
made, and no algorithm or standardized care pathway 
has been defined. Furthermore, cost and local availabil-
ity of different modalities at a particular centre are major 
factors determining the treatment (Box 4).

Early debate as to whether irradiation can kill all 
tumour cells229 and whether enucleation can lead to 
dissemination of tumour emboli and compromised 
survival98 was settled by the Collaborative Ocular 
Melanoma Study (COMS) trial in 1,317 patients with 
medium-​sized UM (height 2.5–10 mm, largest basal 
tumour diameter (LBD) no more than 16.0 mm). This 
showed that the 5-​year and 12-​year UM-​related mor-
tality rates were not significantly different between the 
two forms of treatment230,231. The study justified the use 
of plaque radiotherapy rather than enucleation for 
most medium-​sized UMs. For large-​sized UMs (height 
>10 mm and LBD >16 mm), a trial in 1,003 patients 
showed that the 10-​year UM-​related mortality was not 
significantly different between enucleation alone and 
enucleation preceded by external beam radiotherapy232. 
Hence, pre-​enucleation radiotherapy has been aban-
doned. Further large-​cohort studies have specifically 
evaluated plaque radiotherapy for juxtapapillary cho-
roidal UMs233, for iris melanoma234, for small choroidal 
melanoma188, for large-​sized UMs189 and for extrascleral 
extension235. As the placement of juxtapapillary plaques 
can be difficult for less experienced ocular oncologists, 
teletherapy with different radioactive modalities could 
be another option for juxtapapillary UMs or those 
located at or near the posterior pole.

Radiotherapy
Radiotherapy is the most common globe-​conserving 
therapy for UM. There are two basic types of radiotherapy:  
brachytherapy (plaque radiotherapy) and teletherapy 
(charged particle radiotherapy or stereotactic radiother-
apy). With careful patient selection and an experienced 
physician, there is likely to be no difference in tumour 
control and treatment complications between plaque 
radiotherapy, charged particle radiotherapy and stereo
tactic radiotherapy, but no direct comparisons have  
been performed. Radiation retinopathy, papillopathy, 
haemorrhage, cataract, macular oedema, retinal detach-
ment and neovascular glaucoma can occur, especially 
with large and/or juxtapapillary tumours, and these may 
require enucleation in some patients228,234,236,237. Adverse 
effects can often be treated with intravitreal injections 
of steroids or anti-​angiogenic agents, laser therapy or 
resection of the offending nidus in those with so-​called 
toxic tumour syndrome238.

Plaque radiotherapy. Plaque radiotherapy is a form of 
brachytherapy that uses several radioisotopes including 
iodine-125, ruthenium-106, palladium-103, iridium-192 
and cobalt-60 (refs182,227,239,240). This treatment involves 
suturing a curvilinear radioactive plaque onto the 
sclera, precisely over the tumour, to deliver trans-​scleral 
radiation to the UM. The apex dose of 70 Gy is typi-
cally reached after 5 days, when the device is removed.  

Toxic tumour syndrome
Radiation vasculopathy within 
the tumour that results in 
vascular obstruction and 
incompetence, leading to 
ischaemia, neovascular 
complications, fluid leakage, 
macular oedema and retinal 
detachment.

a b

*

*

Fig. 8 | Gross appearance of UM. a | A heavily-​pigmented uveal melanoma (UM; asterisk) 
confined by the Bruch’s membrane (arrow). There is an adjacent retinal detachment.  
b | An amelanotic UM (asterisk) breaking through Bruch’s membrane (arrows) in a 
mushroom-​shaped configuration.
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The total time depends on the radioactive activity of the  
plaque. To minimize radiation morbidity, intravitreal 
steroids or anti-​angiogenic agents are offered236,241. 
In expert hands and with careful patient selection, 
plaque radiotherapy can achieve tumour control in up 
to 98% of eyes, with globe salvage in ~95% of patients, 
often with useful vision retention242,243. This treatment 
can be applied to small as well as large UMs (Fig. 11).

Charged particle radiotherapy. Charged particle radio
therapy is a form of teletherapy whereby a finely col-
limated beam of protons or helium ions delivers a 
uniform radiation dose to the tumour while minimiz-
ing collateral damage to surrounding tissues (Bragg peak 
effect)237,244–246. Tumour control is achieved in 95–98% 
of eyes237. Proton beam radiotherapy has also been used 
successfully to treat iris melanomas246.

Stereotactic radiotherapy. With stereotactic radiother-
apy, multiple beams of photons are focused onto the 
tumour from different directions, either simultane-
ously or sequentially, such that a high dose of radiation 
is delivered to the tumour while minimizing collateral 
damage to healthy surrounding tissues247. For example, 
there is growing interest in image-​guided, CyberKnife 
robot-​assisted radiosurgery248.

Laser methods
Laser photocoagulation using xenon arc, argon and infra-
red diode laser offers control for small tumours, but has 
largely been abandoned in jurisdictions where radiation is 
available, owing to the risks of retinal traction, gliosis and 
tumour recurrence. Other options include transpupillary 
thermotherapy and photodynamic therapy.

Transpupillary thermotherapy. Transpupillary thermo-
therapy, in which an infrared laser is used to directly 
target a tumour through the pupil, was originally devel-
oped to decrease the size of a UM prior to irradiation249. 
Currently, the treatment is limited to small pigmented 
melanomas in the extramacular, extrapapillary region. 
Early analysis of 256 tumours treated with transpupillary 
thermotherapy showed control in >90% of tumours250. 
Later analysis of 391 small UMs treated by transpupillary 
thermotherapy demonstrated that 5 years after treat-
ment, 29% of tumours recurred; lesions with only a few 
risk factors for UM (rather than naevi) showed better 
control than those with many risk factors251. Indeed, as 
only small and flat UMs can be treated by transpupil-
lary thermotherapy, many treated lesions are probably 
naevi. The first series of tumours treated with combined 
transpupillary thermotherapy and plaque irradiation 
(so-​called sandwich therapy) showed a reduced number 
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Fig. 9 | Cell composition in UM. a | Uveal melanomas (UMs) are composed of a large population of malignant tumour  
cells and a small extracellular matrix component. UM contains spindle-​shaped and epithelioid-​shaped tumour cells, 
endothelial-​lined vascular channels (as well as vasculogenic mimicry patterns, whereby cancer cells generate structures 
that may allow flow of fluids) that are lined at least in part by purportedly transdifferentiated UM cells and fibroblasts.  
The extracellular matrix includes collagen and laminin. Inflammatory cells, including macrophages and lymphocytes, are 
typically present. b | Based on the cellular morphology , UMs can be classified as spindle-​type when at least 90% of the cells 
are so-​shaped. Spindle UM cells have a fusiform nucleus and a prominent nucleolus (inset; ×250, haematoxylin and eosin 
staining). c | UM are classified as epithelioid-​type when at least 90% of the cells are so-​shaped. Epithelioid UM cells are 
larger cells with a central, round nucleus and a large nucleolus (inset; ×250, haematoxylin and eosin staining). d | UM are 
classified as mixed when the proportion of cells falls outside these limits. Mixed cell type UM, the most common, is 
composed of spindle (arrow) and epithelioid (arrowhead) cells (×100, haematoxylin and eosin staining).
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of recurrences249, but a recent update of a larger series 
from this centre did not confirm this finding252.

Photodynamic therapy. In photodynamic therapy, a non-​
thermal laser activates a photosensitive dye (verteporfin) to  
induce vascular closure, tumour necrosis and apop-
tosis. Tumour pigmentation often interferes with this 
treatment, and it has been proposed that this ther-
apy be added to irradiation specifically in amelanotic 
tumours253. Several small studies have found melanoma 
control in selected patients254–256. A new treatment  
using an infrared dye-​conjugated virus-​like particle  
(AU-011) is under investigation for use in small choroidal 
melanomas257,258.

Surgery
Local resection. Local resection of UM involves surgical 
tumour removal either en bloc through a scleral trapdoor 
(exoresection) or in a piecemeal fashion with a vitreous 
cutter passed through the retina (endoresection). These 
methods are deployed for circumscribed tumours that are 
considered unsuitable for radiotherapy owing to their large 
size or juxtapapillary location259,260. In addition to tumour 
removal, resection provides tissue for diagnostic confir-
mation and prognostication with preservation of the globe 
and vision261,262. However, resection is performed at only a 
few ocular oncology centres owing to technical difficulty. 
Complications include rhegmatogenous retinal detachment, 
haemorrhage and tumour recurrence. Owing to concerns 
regarding tumour seeding, endoresection is performed 
only after neoadjuvant radiotherapy in some centres263; 
however, after endoresection alone, rates of local tumour 
recurrence and metastasis are similar to those reported 
after other forms of therapy264.

Enucleation. Enucleation is indicated for advanced UMs 
(diameter >20 mm, thickness >12 mm), UMs with optic 
nerve involvement (which are rare) or orbital invasion 
and/or eyes with secondary glaucoma182,227. An orbital 
implant replaces the globe volume, and some implants 
can be attached to the rectus muscles so that motility of 
the prosthesis is retained.

Exenteration. Orbital exenteration (which involves 
removal of the globe, muscles, nerves and fatty tissue 
adjacent to the eye) is indicated for cases with massive 
orbital tumour growth. If possible, the eyelid-​sparing 

exenteration technique is performed to facilitate rapid 
rehabilitation.

Aftercare
Following ocular treatment of UM, patients are often 
monitored by an ophthalmologist specialized in ocu-
lar oncology. Following irradiation, visits typically take 
place every 3–6 months for the first 2 years and every 
6–12 months thereafter to identify and treat tumour 
recurrence and any iatrogenic complications227,265. At 
each visit, a full ocular examination is performed, with 
visual acuity measurement, tonometry (to determine the 
intraocular pressure) and mydriasis (to enhance exam-
ination of the back of the eye). Assessing local tumour 
control with colour photography and ultrasonography 
is also required; OCT and, in some cases OCT angio
graphy, are used to identify any maculopathy. Wide-​field 
imaging is useful, using colour photography and fluores-
cein angiography, to assess for peripheral tumours and 
retinal perfusion after radiotherapy.

Local recurrence. Local control of UM is high following 
radiotherapy. In one centre, the rate of recurrence fol-
lowing brachytherapy was 10%, with most recurrences 
occurring within 5 years of treatment266. The most com-
mon type of recurrence is at the margin of the tumour, 
whereas central anterior ‘ring’ and extraocular extension 
recurrences are less common. Following plaque radio-
therapy, recurrence was 6% at 5 years and 11% at 10 years 
for small (≤3 mm thickness) UMs, and 13% at 5 years for 
large (≥10 mm thickness) UMs188,189. Recurrence is asso-
ciated with an increased risk of developing metastases267. 
Recurrence has to be differentiated from inadequate 
tumour regression (non-​responsiveness).

Visual outcomes. Tumour size and proximity to the optic 
disc and foveola are exquisitely important in visual out-
come. Different types of treatment are associated with 
different ocular outcomes, but radioactive plaque therapy 
is used as an example for studying outcome. Following 
plaque radiotherapy for macular UM in 630 eyes, com-
plications at 5 years included visually significant macu-
lopathy (40% of eyes), cataract (32%) and papillopathy 
(13%)268. In a group of 1,106 patients with an initial visual 
acuity of 20/100 or better, moderate loss of visual acuity 
of ≥5 Snellen lines was found in 33% at 5 years and 69% 
at 10 years242. Factors predictive of vision loss included 

Rhegmatogenous retinal 
detachment
In which a tear in the retina 
leads to fluid accumulation and 
separation of the neurosensory 
retina from the underlying 
retinal pigment epithelium.

Snellen lines
The Snellen chart has eleven 
lines of block letters used to 
measure visual acuity.

a b c

Fig. 10 | Iris and ciliary body uveal melanoma. a | Slit lamp photograph shows a vascularized moderately pigmented iris 
melanoma (dashed line) located in the inferior iris. b | Slit lamp photograph shows a pigmented ciliary body melanoma 
behind the lens, with sentinel vessels in the episclera overlying the tumour (arrowhead). c | Low power magnification 
shows the ciliary body location of a moderately pigmented melanoma (haematoxylin and eosin staining).
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tumour proximity to the foveola (≤5 mm), greater tumour 
thickness, poor initial visual acuity, older age (≥60 years) 
and presence of subretinal fluid242,269. For small choroidal 
tumours (≤3 mm thickness, mean 3 mm to the foveola), 
poor visual outcome of ≤20/200 at 10 years was noted in 
54% of eyes188, whereas for large UMs (≥10 mm thick-
ness, mean 6 mm to the foveola) poor visual outcome at 
7 years was noted in 47% of eyes189. Predictors of visual 
outcome after proton beam radiotherapy are similar246. 
More recently, to minimize radiation complications and 
improve visual acuity, additional periocular or intravitreal  
injection of triamcinolone (a glucocorticoid) or intra
vitreal anti-​VEGF agents, and/or sector pan-​retinal photo
coagulation have been performed236,241,270,271. Although 
the peak development of radiation retinopathy occurs 
by 5 years, 7% of patients had developed retinopathy  
7–10 years after treatment269. Thus, extended monitoring 
for radiation retinopathy is recommended.

Probability of developing metastasis
Systemic surveillance is generally performed to detect 
metastases, especially after enucleation, and is usu-
ally undertaken by a medical oncologist. Surveillance 
guidelines have been prepared by the US National 
Comprehensive Cancer Network265. Nowadays, a per-
sonalized prognostication based on several clinical and 
genetic determinants can provide accurate prognostic 
information for each patient272. Such prognostic factors 
are clinical, histological or genetic.

Estimation of metastatic risk is required for patient 
counselling, planning of systemic surveillance and selec-
tion of patients for any available clinical trials of systemic 
adjuvant therapy. Some highly specialized centres pro-
vide adjuvant therapy for patients with high-​risk UM to 
prevent metastatic disease273, but there is as yet no proof 
of effectiveness. The frequency and type of any surveil-
lance imaging may be stratified according to risk. The 
standard prognostic tool for choroidal and ciliary body 
UMs is the AJCC TNM staging system267, which is based 
on evidence from >7,000 patients provided by members 
of the European Ophthalmic Oncology Group. First, 
tumours are categorized according to their basal diameter 

and thickness, then sub-​categorized according to ciliary 
body involvement, extraocular extension or both. These 
categories are grouped into stages I–IV according to 
their statistical association with metastatic mortality, 
the 10-​year survival probability being ~90% for those 
with AJCC stage I tumours, ~75% for those with stage II  
tumours and <60% for those with stage III tumours267.

A limitation of the AJCC staging system is that it 
does yet not take into account tumour histology and 
genetic characteristics. Histopathological predictors  
of metastases include epithelioid cell type, high number of  
mitoses274, presence of high numbers of lymphocytes or 
macrophages159,275 and presence of specific extravascular 
matrix patterns226. Genetic markers of a bad prognosis 
are monosomy 3 and the presence of additional copies 
of chromosome 8 (refs276–278), whereas 6p gain provides 
a protective effect279,280. Genetic studies have shown that 
analysis of the chromosome status281,282, mutation type101 
or the mRNA GEP20,283 can be used for prognostication 
(reviewed in ref.284). Based on cytogenetics analysis in 
1,059 patients, tumours with monosomy 3 and 8q gain 
demonstrate an 11–123-​fold increased risk of metastatic 
disease compared with tumours with normal chromo-
somes 3, 6 and 8 (ref.216). Combining cytogenetics ana
lysis with the AJCC tumour classification in a group of 
522 patients provided a significant improvement in prog-
nostication285,286. Based on the GEP of tumour mRNA 
instead of chromosome status, tumours can be divided 
into class I and class II tumours: in 459 patients, the 
4-​year risk of metastasis was 3% for class I GEP and 80% 
for class II GEP287. Class I GEP corresponds to a normal 
chromosome 3 status (tumour types A and B; Table 1), 
and class II GEP to monosomy 3 (tumour types C and D; 
Table 1)18–20. A further subdivision of class I is possible, 
with class Ib having a worse prognosis than class Ia.

Aside from tumour size and genetics, a wide range of 
patient and tumour characteristics influence the devel-
opment of metastases. The Liverpool Uveal Melanoma 
Prognosticator Online (LUMPO) estimates both met-
astatic and non-​metastatic mortality according to ana-
tomical, pathological and genetic factors, also taking 
patient age and sex into account281,288 (Fig. 12). The model 
adjusts for bias caused by missing data and competing 
risks and is available on the Internet, currently free of 
charge. This tool is evolving as more data accrue. The lat-
est version, LUMPO III, includes 8q gains in the model 
and recently underwent multicentre validation. A dif-
ferent online tool, PRiMeUM, can predict metastases 
within 48 months of treatment of a primary UM289.

The reliability of prognostication depends on the 
accuracy of tumour measurements and, if tissue is avail-
able, the subjective categorization of histological find-
ings as well as the sensitivity of genetic analyses. As with 
other diseases, prognostication takes account of how 
much the patient wishes to know and is supported by 
adequate counselling and psychological support.

Treatment for metastasis
Consensus statements by the National Comprehensive 
Cancer Network and other organizations recommend 
consideration of surveillance, including imaging of the 
liver, based upon metastatic risk, with broad latitude 

Box 4 | UM treatment worldwide

Ruthenium brachytherapy is used to treat uveal melanoma (UM) in Argentina, Asia 
(South Korea and Thailand), many parts of Europe, Iran, South Africa and the United 
Arab Emirates, with good tumour control and minimal need for enucleation. Iodine 
brachytherapy can also be used to treat UM and is available in certain places, including 
Canada, China and New Zealand. Ruthenium and iodine are available in Brazil, Finland, 
India, Spain and the USA.

Some centres in France, Germany, Italy, South Korea, Poland, Scotland, the USA  
and Netherlands, offer proton beam therapy for UMs that present with optic nerve 
infiltration and trans-​scleral growth. Unfortunately, this therapy is extremely expensive 
and not widely available357. Various forms of stereotactic radiotherapy have been 
reported as effective treatment modalities elsewhere in the world358,359.

Photodynamic therapy has been reported as a treatment for both pigmented and 
non-​pigmented choroidal melanoma in a few centres in Italy360 and the UK361. In the British 
study, small pigmented lesions were controlled by three sessions in 62% of patients.

Local resection and endoresection have been used for decades as a primary treatment 
or following radiotherapy with brachytherapy or proton beam362. Reports of primary 
endoresection are available from the UK264, Russia363, Iran, Spain, South Africa364  
and Brazil365.
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regarding imaging modality (based upon local exper-
tise), frequency (3–12 month intervals) and duration 
(10 years, then subsequently as clinically indicated)265,290. 
Hepatic MRI is frequently used for surveillance; how-
ever, it should be noted that small metastatic tumours 
with pseudosinusoidal spaces are camouflaged within 
the surrounding tissue so that they may not be detected 
by MRI122. The nodular pattern is vascularized and may 
be more evident with this imaging modality291.

As there is no standard treatment for the prevention 
or treatment of metastases, clinical trial participation is 
encouraged for patients in both adjuvant and advanced 
disease settings, although the number of trials developed 
specifically in UM remains low. In the adjuvant setting, 
no survival benefit was observed in patients with UM 
treated with interferon in two single-​arm trials when 
compared with historical controls292,293. Two completed 
randomized adjuvant trials in this disease were simi-
larly negative, one with dacarbazine and another with 
Bacillus Calmette-​Guérin injections294,295. Contemporary 
adjuvant trials limit eligibility to patients at high-​risk 
of developing metastasis based upon clinical and/or 
molecular prognostic factors, reducing the sample size 
required; however, enrolment remains challenging as 
highlighted by FOTEAD, a randomized phase III trial of 
adjuvant fotemustine versus observation, which closed 
prematurely due to slow accrual296. Once metastatic 
disease has developed, options include observation or 
participation in trials. No curative treatment has been 
identified and, as UM differs from cutaneous melanoma, 
trials should be UM-​specific1. Currently active trials are 

based on biological insights in UM that suggest critical 
roles for the PKC–MAPK signalling pathway, epigenetic 
modifications, angiogenesis and immunology (Table 2).

Surgical resection or ablation of oligometastases may 
improve outcome in selected patients. As liver metasta-
ses are preferentially supplied by hepatic artery branches, 
regional approaches, including intra-​arterial chemother-
apy, isolated hepatic perfusion and chemoembolization, 
have been investigated. Two randomized phase III trials 
of liver-​directed therapies including patients with UM 
have been completed, including one comparing hepatic 
intra-​arterial with intravenous fotemustine (n = 171)297 
and another comparing melphalan percutaneous hepatic 
perfusion (PHP) with best alternative care (n = 93)298. 
Both approaches demonstrated improved responses 
and disease control with regional therapy, with no effect 
on survival; however, the melphalan trial permitted 
crossover of patients initially randomly assigned to best 
alternative care to receive PHP at the time of progres-
sion, confounding the analysis of survival effects. The 
ongoing phase III FOCUS trial was initially designed to 
randomly assign 240 patients to PHP or best alternative 
care without crossover, with a primary end point of sur-
vival; however, due to accrual challenges, the study was 
modified to remove random assignment.

Various systemic treatments have been evaluated 
primarily in single-​arm phase II studies, with response 
rates generally <10%, disease control of <4 months and 
survival of <1 year. Systemic chemotherapeutic regimens 
in UM have been adopted from cutaneous melanoma, 
including dacarbazine, temozolomide, cisplatin, benda-
mustine, treosulfan, fotemustine-​based regimens and 
others, without meaningful clinical improvement299–306. 
Inhibition of pathways downstream of Gαq at the level 
of MEK or PKC alone and in combination with com-
ponents of the AKT–PI3K pathway have been studied, 
with limited, if any, benefit achieved for the overall pop-
ulation307–309. However, clinical benefit was observed in 
smaller subsets of patients in some studies310, which may 
not be reflected in the reported clinical end points, which 
are typically reported as median values. Additional 
strategies targeting downstream effectors of Gαq

79,80, 
Gαq directly311 and epigenetic modifications18,312,313 have 
demonstrated preclinical efficacy, providing rationale for 
additional ongoing studies (Table 2). Immune checkpoint 
blockade at the level of CTLA4 (refs314,315) or PD1 (ref.316) 
demonstrated response rates of <10% and was associated 
with a median survival of <1 year. The high mutational 
burden that may develop in patients with UM harbour-
ing biallelic loss of MBD4 may result in a few patients 
achieving significant clinical benefit with single-​agent 
checkpoint blockade42, but, in general, the clinical util-
ity of these agents in the unselected UM population is 
poor. Outside clinical trials, combinatorial checkpoint 
blockade has achieved numerically superior response 
rates and survival when compared with historical con-
trols, and such therapy is a reasonable consideration for 
patients who can tolerate the potential adverse effects317. 
Additional novel immunological strategies, including 
adoptive T cell therapy177 and T cell redirection181 have 
also demonstrated promising preliminary results, and 
tebentafusp (IMCgp100), a bispecific molecule targeting 

a

c d

b

Fig. 11 | A medium-sized and a large choroidal melanoma before and after 
irradiation. a | A medium-​sized choroidal melanoma (thickness 5.0 mm) before 
irradiation. b | The same tumour as in panel a after radioactive plaque irradiation 
(thickness 2.0 mm). c | A large choroidal melanoma (thickness 9.0 mm) before irradiation. 
d | The same tumour as in panel c after plaque radiotherapy (thickness 3.5 mm).

	  17NATURE REVIEWS | DISEASE PRIMERS | Article citation ID:            (2020) 6:24 

P r i m e r

0123456789();



gp100 and that attracts CTLs to the UM cells, is now in 
registration-​intent development318,319.

Quality of life
Patient-​reported outcomes
After ocular treatment, patients with posterior UM 
can experience ocular discomfort, visual difficulties, 
facial deformity after exenteration, worries about future 
health, anxiety, depression and/or loss of wellbeing. 
Awareness of these problems has improved patient coun-
selling, treatment selection and psychological support 
aimed at preventing or alleviating any distress.

The largest study on quality of life to date was per-
formed at the Liverpool Ocular Oncology Service, UK. It 
included 442 patients who had undergone primary enu-
cleation and 1,154 patients who had received ruthenium 
plaque radiotherapy or proton beam radiotherapy320. 
Patients who underwent enucleation were more likely to 
be male and older, and had a more advanced tumour and 
a poorer survival probability. After enucleation, almost 
one-​third of patients reported difficulties caused by loss 
of stereopsis and visual field. Over time, these difficulties 
diminished as the patients adjusted to their monocular-
ity, but worsened in patients who had received radiother-
apy, owing to increasing radiation-​induced morbidity321. 
This information is useful in personalizing care.

Worries about future metastasis were more common 
after enucleation than radiotherapy (36% versus 29%)320. 
Worries about local tumour recurrence were reported 
by 22% of irradiated patients and, interestingly, by 18% 
of patients who underwent enucleation. This surpris-
ing finding emphasizes the need for repeated counsel-
ling and reassurance320. Multivariable analyses showed 
minimal differences between the two kinds of treat-
ment with respect to anxiety, depression and wellbeing, 
which were more likely to be determined by age, sex, 
general health, social support, employment and other 
factors unrelated to the ocular tumour or its treatment. 
These insights should enhance the counselling that is 
provided to patients when deciding between enucleation 
and radiotherapy. Fewer than 20% of patients reported 
their quality of life to be ‘poor’ and, of these, only 20% 
attributed their poor quality of life to their ocular con-
dition. Indeed, the wellbeing of the patients in this UK 
study was comparable to that of the general US popula-
tion, except for emotional wellbeing, which was found 
to be poorer after enucleation, probably owing to fears 
of developing metastatic disease. These data are useful 
to ensure practitioners provide sensitive reassurance to 
patients. These results indicate that patients with UM 
experience good quality of life, even after enucleation, 
but may need psychological support if they encounter 
adversity, such as a high-​risk of metastasis, poor general 
health, poor vision in the opposite eye or lack of social 
support. Economic implications of these findings have 
not been studied but may result in financial savings if the 
data from this study encourage patients with advanced 
disease to have primary enucleation, thereby avoiding 
a prolonged course of treatment for radiation-​induced 
complications.

Patient needs and satisfaction with care
An online survey of patients with UM by the Ocular 
Melanoma Foundation in the USA about their expected 
care revealed a number of shortcomings322. Patients 
expressed regret that their tumour had not immedi-
ately been detected, that they had not been informed of 
the presence of a fundus lesion and that they were not 
advised that the ‘mole’ that was being observed with-
out treatment could be malignant. Other complaints 
included the ‘callous’ manner in which patients were 
spoken to by their ophthalmologist, lack of emotional 
support, lack of opportunity to ask questions, insuffi-
cient information regarding all therapeutic options and 
lack of awareness regarding prognostic biopsy. Patients 
also indicated that they would have liked more informa-
tion and advice on matters such as financial implications 
of investigations and treatment, patient advocacy groups 
and how to discuss their condition with their family, 
friends and colleagues at work.

The authors of the study prepared a ‘bill of rights’ 
specific to patients with UM, which included the right to 
be informed of any findings and their significance, to be 
informed of all therapeutic options (including those not 
available at the treatment centre) and to be informed  
of what to expect should they decide not to have a 
treatment. Furthermore, each patient should have the 
opportunity to ask questions and to be informed of  
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Fig. 12 | LUMPO prognostication tool. The Liverpool Uveal Melanoma Prognosticator 
Online LUMPO III estimates of survival, metastatic death and non-​metastatic death in  
a woman 60 years of age with a choroidal melanoma with a basal diameter of 16 mm  
and a thickness of 8 mm if: no histological and no genetic data are available (panel a);  
no epithelioid cells are present, and the tumour has no chromosome 3 loss and no 8q gain 
(panel b); epithelioid cells are present and the tumour has monosomy 3 alone (panel c); 
and if epithelioid cells are present, and the tumour has both monosomy 3 and 8q gain 
(panel d). The statistical model adjusts for competing risks. This figure shows the value of 
prognostic tumour biopsy. Developed using the LUMPO III prototype (www.LUMPO.net), 
and adapted with permission from Azzam Taktak , Royal Liverpool University Hospital, 
Liverpool, UK and Bertil Damato, Nuffield Department of Clinical Neurosciences, 
University of Oxford, UK.
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the option of having a prognostic biopsy and genetic 
tumour typing, with an adequate explanation of the risks 
and benefits of this procedure. Although such standards 
apply to all patients with any disease, the hope is that this 
bill of rights will improve standards of care for patients 
with UM, especially in centres where patients are not 
managed by ocular oncologists in an experienced multi
disciplinary team and in departments that lack neces-
sary imaging and therapeutic resources. In time, patient 
advocacy groups may define minimum specifications 
for ocular oncology clinics, even publicly ‘naming and 
shaming’ health-​care providers and departments that 
fall short of expectations. Defining the specifications for 
ocular oncology fellowships will help to further educate 
ophthalmologists with an interest in ocular oncology.

Outlook
Although the main oncogenic events in primary UM 
are known, a better understanding of their sequence and 
biological consequences is needed to effectively prevent 
or treat metastases. What the consequences are of BAP1 

inactivation, aberrant splicing in SF3B1 or aberrant 
translation in EIF1AX remain to be determined. How the 
recurrent copy number alterations found in most UM, 
such as monosomy 3 and/or gain of 8q, drive tumori-
genesis also remains unclear. Recent studies have shown 
that many genetic aberrations are similar in the primary 
and the metastases105,106; accordingly, information about 
these abnormalities may help develop therapies for 
metastatic disease. However, metastases also harbour 
additional mutations, which may be targets for ther-
apy. Accordingly, approaches that cause DNA damage  
to increase the mutational burden of the tumour, prior to 
applying immunotherapy, may have merit in UM323–325.

We furthermore need a better understanding of inter-
actions between tumour cells and their microenviron-
ment, both in the primary disease and metastatic setting, 
to determine which drugs or which forms of immuno-
therapy might be effective, and what can be done to 
overcome the current lack of effect of many immunolog-
ical approaches. We need to know whether the relative 
resistance to immune checkpoint blockade in UM may 

Table 2 | Clinical trials for patients with advanced uveal melanoma in 2020

Agent Phase Sponsor ClinicalTrials.gov ID

Adjuvant trials

Sunitinib versus valproic acid II Thomas Jefferson University (Philadelphia, PA , USA) NCT02068586

Dendritic cells plus autologous tumour RNA III University Hospital Erlangen (Erlangen, Germany) NCT01983748

Ipilimumab and nivolumab II Georgetown University (Washington, DC, USA) NCT03528408

PKC–MAPK pathway

Intermittent selumetinib I Columbia University (New York , NY, USA) NCT02768766

IDE196 I/II IDEAYA Biosciences (San Francisco, CA , USA) NCT03947385

Epigenetic therapies

Vorinostat II National Cancer Institute (Bethesda, MD, USA) NCT01587352

PLX2853 I/II Plexxikon (Berkeley , CA , USA) NCT03297424

DNA damage repair targeting

Neratinib II University of Florida (Gainesville, FL , USA) NCT03207347

Immune checkpoint blockade

Ipilimumab plus nivolumab and immunoembolization II Thomas Jefferson University (Philadelphia, PA , USA) NCT03472586

Ipilimumab plus nivolumab and yttrium-90 
radioembolization

0 California Pacific Medical Center (San Francisco, CA , USA) NCT02913417

ADV/HSV-​tk , stereotactic body radiation therapy and 
nivolumab

II Houston Methodist Hospital (Houston, TX, USA) NCT02831933

Cellular therapy

Dendritic cell vaccine II University Hospital Erlangen (Erlangen, Germany) NCT01983748

Adoptive T cell therapy II University of Pittsburgh (Pittsburgh, PA , USA) NCT03467516

Cellular adoptive immunotherapy plus ipilimumab I MD Anderson Cancer Center (Houston, TX, USA) NCT03068624

T cell redirection

Tebentafusp (IMCgp100) II Immunocore Ltd (Milton, UK) NCT03070392

Hepatic intratumoural and regional therapies

Radioembolization versus transarterial 
chemoembolization

II Charité – Universitätsmedizin Berlin (Berlin, Germany) NCT02936388

Isolated hepatic perfusion versus best alternative care III Sahlgrenska University Hospital (Gothenburg, Sweden) NCT01785316

Percutaneous hepatic perfusion III Delcath Systems Inc. (Queensbury , NY, USA) NCT02678572

Intratumoural PV-10 I Provectus Biopharmaceuticals Inc. (Knoxville, TN, USA) NCT00986661

Actively recruiting on 18 January 2020; see www.clinicaltrials.gov for a real-​time listing. ADV/HSV-​tk , adenovirus/herpes simplex virus thymidine kinase.
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partly be attributable to expression of checkpoint mol-
ecules other than PDL1, and further clarity is required 
regarding the immune cells involved in UM, mecha-
nisms of immune evasion unique to UM, and clinical 
and molecular predictors of benefit to immunotherapies. 
Indeed, tebentafusp, which redirects CD3+ T cells to 
gp100-​expressing UM cells, has shown promising pre-
liminary clinical efficacy, which may reflect the need to 
draw T cells to the tumour. Despite the limited efficacy 
of immune checkpoint blockade in UM, the early clinical 
results of tebentafusp suggest that UM requires immune 
modulation different from that required in, for example, 
cutaneous melanoma, for optimal antitumour effects.

From a clinical perspective, early detection of ocu-
lar tumours is improving through advances in ocular 
imaging in the community; however, differentiation of 
small UMs from naevi and other benign lesions contin-
ues to be a problem. Overcoming these difficulties by 
applying artificial intelligence to ocular imaging may be 
possible and is already happening with other diseases. 
Furthermore, prognostication has improved substan-
tially through the use of multivariable analysis that 
includes anatomical, histological and/or genetic predic-
tors, in combination with age and sex. Novel statistical 
methods can overcome bias caused by missing data and 
competing causes of death. Such progress is expected 
to continue with further advances in biopsy, genetics  
and statistics.

Once diagnosed, the goals of treatment of the pri-
mary tumour are to prevent metastatic spread and to 
conserve the eye with useful vision. However, no stand-
ardized management algorithm is available. Although 
saving the eye is usually possible with radiotherapy, 
vision often deteriorates with posterior UMs owing to 
radiation-​induced optic neuropathy and maculopathy. 
Ocular morbidity can also occur as a result of exudation 
from the irradiated tumour and excessive production of 
angiogenic factors, which can cause optic disc and iris 
neovascularization and neovascular glaucoma (toxic 
tumour syndrome). A better understanding of the 

pathology of such iatrogenic morbidity should improve 
ocular outcomes. Recent advances in immunotherapy 
and chemotherapy have enhanced prospects to reduce 
tumour volume before administering focal ocular 
therapy, thereby minimizing ocular morbidity.

Many UMs metastasize at a very early stage; micro-
metastases are already present by the time the tumour 
is first recognized and treated. This insight has stimu-
lated interest in replacing long-​term surveillance of small 
melanocytic tumours of uncertain malignancy with 
genetic analysis of tumour or liquid biopsies to enable 
early treatment206. Emerging strategies for treating such 
tumours with minimal morbidity include photodynamic 
therapy that is administered by intravitreal injection of 
a novel, recombinant, papillomavirus-​like particle drug  
(AU-011) conjugated with a phthalocyanine photosensi-
tizer (IRDye 700DX)258. This conjugate is then activated 
by a near-​infrared laser, causing a cytotoxic tumour effect. 
This drug is currently under investigation for safety and 
efficacy in the treatment of small choroidal melanoma257.

Several studies have shown that local failure of UM 
treatment is associated with a higher rate of meta-
static disease326. Whether the persistent tumour causes 
metastasis or whether recurrence is only an indicator 
of increased malignancy is not known. To address this 
question, studies are being planned to compare the 
genetic profiles of recurrent tumours with pretreatment 
biopsies, which may enable ocular treatment to be tailo
red not only according to tumour size and location but 
also histological and genetic ‘degrees’ of malignancy.

Awareness is growing of the need to provide more 
holistic care, not only treating the disease but also pro-
viding better psychological support to patients and their 
families. These measures are improving the wellbeing  
of those affected by UM, regardless of outcome. However, 
the ultimate goal is — of course — to develop treatments 
that will save vision, effectively treat metastases and, 
ultimately, save lives.
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